• Back
  • Grades 3-5

    Engineering Design

Students who demonstrate understanding can:

Performance Expectations

  1. Plan and carry out fair tests in which variables are controlled and failure points are considered to identify aspects of a model or prototype that can be improved. 3-5-ETS1-3

    Clarification Statement and Assessment Boundary

A Peformance Expectation (PE) is what a student should be able to do to show mastery of a concept. Some PEs include a Clarification Statement and/or an Assessment Boundary. These can be found by clicking the PE for "More Info." By hovering over a PE, its corresponding pieces from the Science and Engineering Practices, Disciplinary Core Ideas, and Crosscutting Concepts will be highlighted.

By clicking on a specific Science and Engineering Practice, Disciplinary Core Idea, or Crosscutting Concept, you can find out more information on it. By hovering over one you can find its corresponding elements in the PEs.

Planning Curriculum

Common Core State Standards Connections

ELA/Literacy

  • W.5.7 - Conduct short research projects that use several sources to build knowledge through investigation of different aspects of a topic. (3-5-ETS1-3)
  • W.5.8 - Recall relevant information from experiences or gather relevant information from print and digital sources; summarize or paraphrase information in notes and finished work, and provide a list of sources. (3-5-ETS1-3)
  • W.5.9 - Draw evidence from literary or informational texts to support analysis, reflection, and research. (3-5-ETS1-3)

Mathematics

  • MP.2 - Reason abstractly and quantitatively. (3-5-ETS1-3)
  • MP.4 - Model with mathematics. (3-5-ETS1-3)
  • MP.5 - Use appropriate tools strategically. (3-5-ETS1-3)

Model Course Mapping

First Time Visitors

Resources & Lesson Plans

  • More resources added each week!
    A team of teacher curators is working to find, review, and vet online resources that support the standards. Check back often, as NSTA continues to add more targeted resources.
  • Students observe and measure a tumblewing glider's motion, conducting a series of investigations to test the effect of changes to the glider's structural features on the flight path and duration of their gliders.  The data coll ...

  • This one and half minute silent video shows the phenomenon of the collapse of the Tacoma Narrows Bridge located in Washington state.  The bridge opened to traffic on July 1, 1940 and collapsed only four months later on November 7, ...

  • In Feel the Heat, students follow the engineering design process to build a solar hot water heater and redesign their device to see how big a temperature change they can get by changing different variables. The phenomenon of energ ...

  • Students model how NASA uses radios waves signals to encode, transmit and decode information using a metronome and musical instruments.  Students are then challenged to design a faster way to send signals.

  • Students plan and carry out investigations before developing and using models to describe patterns of waves in terms of amplitude and wavelength, and to demonstrate that waves can cause objects to move. Connections are made to real world example ...

  • Students are introduced to the trial, error, and redesign of the engineering process in the book  Captain Arsenio: Adventures and (Mis) adventures in Flight by Pablo Bernasconi. In a follow up activity, students consider ...

  • In this engineering activity, students are challenged to design and construct a roof that will protect a cardboard house from getting wet.   The criteria and constraints for the design is that students need to develop a roofing system ...

  • This activity is one in a series of Mission: Solar System design challenges developed by PBS’s Design Squad, NASA and the National Science Foundation.  Students design, build, and improve a model that mimics gravity-assisted spac ...

  • Do you have a great resource to share with the community? Click here.

Planning Curriculum gives connections to other areas of study for easier curriculum creation.