• Back
  • Middle School

    Engineering Design

Students who demonstrate understanding can:

Performance Expectations

  1. Define the criteria and constraints of a design problem with sufficient precision to ensure a successful solution, taking into account relevant scientific principles and potential impacts on people and the natural environment that may limit possible solutions. MS-ETS1-1

    Clarification Statement and Assessment Boundary
  2. Evaluate competing design solutions using a systematic process to determine how well they meet the criteria and constraints of the problem. MS-ETS1-2

    Clarification Statement and Assessment Boundary
  3. Analyze data from tests to determine similarities and differences among several design solutions to identify the best characteristics of each that can be combined into a new solution to better meet the criteria for success. MS-ETS1-3

    Clarification Statement and Assessment Boundary
  4. Develop a model to generate data for iterative testing and modification of a proposed object, tool, or process such that an optimal design can be achieved. MS-ETS1-4

    Clarification Statement and Assessment Boundary

A Peformance Expectation (PE) is what a student should be able to do to show mastery of a concept. Some PEs include a Clarification Statement and/or an Assessment Boundary. These can be found by clicking the PE for "More Info." By hovering over a PE, its corresponding pieces from the Science and Engineering Practices, Disciplinary Core Ideas, and Crosscutting Concepts will be highlighted.

Science and Engineering Practices

Asking Questions and Defining Problems

Asking questions and defining problems in grades 6–8 builds from grades K–5 experiences and progresses to specifying relationships between variables and clarifying arguments and models.

Developing and Using Models

Modeling in 6–8 builds on K–5 experiences and progresses to developing, using, and revising models to describe, test, and predict more abstract phenomena and design systems.

Analyzing and Interpreting Data

Analyzing data in 6–8 builds on K–5 experiences and progresses to extending quantitative analysis to investigations, distinguishing between correlation and causation, and basic statistical techniques of data and error analysis.

Engaging in Argument from Evidence

Engaging in argument from evidence in 6–8 builds on K–5 experiences and progresses to constructing a convincing argument that supports or refutes claims for either explanations or solutions about the natural and designed world(s).

By clicking on a specific Science and Engineering Practice, Disciplinary Core Idea, or Crosscutting Concept, you can find out more information on it. By hovering over one you can find its corresponding elements in the PEs.

Planning Curriculum

Common Core State Standards Connections

ELA/Literacy

  • RST.6-8.1 - Cite specific textual evidence to support analysis of science and technical texts. (MS-ETS1-1), (MS-ETS1-2), (MS-ETS1-3)
  • RST.6-8.7 - Integrate quantitative or technical information expressed in words in a text with a version of that information expressed visually (e.g., in a flowchart, diagram, model, graph, or table). (MS-ETS1-3)
  • RST.6-8.9 - Compare and contrast the information gained from experiments, simulations, video, or multimedia sources with that gained from reading a text on the same topic. (MS-ETS1-2), (MS-ETS1-3)
  • SL.8.5 - Integrate multimedia and visual displays into presentations to clarify information, strengthen claims and evidence, and add interest. (MS-ETS1-4)
  • WHST.6-8.7 - Conduct short research projects to answer a question (including a self-generated question), drawing on several sources and generating additional related, focused questions that allow for multiple avenues of exploration. (MS-ETS1-2)
  • WHST.6-8.8 - Gather relevant information from multiple print and digital sources, using search terms effectively; assess the credibility and accuracy of each source; and quote or paraphrase the data and conclusions of others while avoiding plagiarism and following a standard format for citation. (MS-ETS1-1)
  • WHST.6-8.9 - Draw evidence from informational texts to support analysis reflection, and research. (MS-ETS1-2)

Mathematics

  • 7.EE.B.3 - Solve multi-step real-life and mathematical problems posed with positive and negative rational numbers in any form (whole numbers, fractions, and decimals), using tools strategically. Apply properties of operations to calculate with numbers in any form; convert between forms as appropriate; and assess the reasonableness of answers using mental computation and estimation strategies. (MS-ETS1-1), (MS-ETS1-2), (MS-ETS1-3)
  • 7.SP.C.7 - Develop a probability model and use it to find probabilities of events. Compare probabilities from a model to observed frequencies; if the agreement is not good, explain possible sources of the discrepancy. (MS-ETS1-4)
  • MP.2 - Reason abstractly and quantitatively. (MS-ETS1-1), (MS-ETS1-2), (MS-ETS1-3), (MS-ETS1-4)

Model Course Mapping

First Time Visitors

Resources & Lesson Plans

  • More resources added each week!
    A team of teacher curators is working to find, review, and vet online resources that support the standards. Check back often, as NSTA continues to add more targeted resources.
  • This activity from the Teach Engineering Digital Library engages students in the engineering design process as they build physical models of roller coasters using foam pipe insulation and marbles.  The lesson features a host of instructional sup ...

  • This is one activity out of the Project Learning Tree  Pre K-8 Environmental Education Activity Guide. Project Learning Tree® (PLT) is a program of the Sustainable Forestry Initiative that offers high-quality instructional materials for grad ...

  •      Students test various endothermic and exothermic changes and reactions, then use their findings to design a reptile egg carrier.  The egg carrier must reach a specific temperature range and be designed to protect a repti ...

  • Students will experiment with magnets to identify magnetic properties and the differences between contact and non-contact forces.  They will use their discoveries, based on the results of their experiments, to design and build a "levitating ...

  •   This assessment is one of the first that was published by Achieve, the organization that coordinated the writing of the Next Generation Science Standards.  It includes a standards bundle (integration) of nine CCSS-Math standards, three ...

  • The article describes an engineering project that is to be done as the culminating event in a unit on biodiversity and adaptation.  Students apply what they have learned about these disciplinary core ideas to design products for humans that are ...

  • In the Pollution Patrol lesson, students work in teams to design and build their own outdoor air pollution detectors out of everyday items. They design, refine and then test their air pollution detectors, and then see how many particulate pollutants ...

  • In this lesson, students use their knowledge of forces to answer the driving question: What components and materials can be used to create a model chair lift, designed to carry a set of aid materials?  They use the Engineering Design Process to ...

  •   Musical Plates-A Study of Plate Tectonics is an internet-based multidisciplinary project. Musical Plates - A Study of Plate Tectonics is one of 3 Musical Plates projects found on the k12 science.org” This review is a description of th ...

  • In this series of 5 lessons, students first build up a background knowledge of thermal energy transfer, distinguishing heat from temperature. They then investigate the insulative properties of various materials. They use this background learning to d ...

  • In this short unit students are introduced to erosion and propose solutions to an erosion problem on school grounds. The teacher first briefly demonstrates what erosion is, and then students investigate examples of natural or human caused erosion on ...

  • The overarching unit has students learn about, design, and build biosuits - suits designed to protect people in potentially dangerous conditions while allowing for complex tasks to still be completed. This review focuses on lessons 3 and 4 of that tw ...

  • This 25 minute movie from PBS highlights the work of a group of female, middle school students in a science club. Very short cartoon portions of the video can be edited off of the beginning and end. The goal of the group of students is to improve the ...

  • In this lesson, students become bioengineers, trying to effectively and safely restore “blood flow” through a model clogged artery. Background work, including dissection ideas, provides students with an understanding of circulatory system ...

  • This article by Dr. Stuart Burge provides step-by-step directions on how to use a Pugh Matrix (also called a Pugh Chart, Pugh Method, and Decision Matrix). A Pugh Matrix is used by engineers to evaluate multiple design options based on a set of crite ...

  • This lesson plan introduces students to the process of plating one metallic object with another metal and the importance of this process in engineering applications. With parameters, students design strategies to copperplate other metal objects using ...

  • The president has sent out a memo to engineers in the state of “Alabraska”—your help is needed to save the human population from an asteroid impact! This lesson plan is the first in a series of 8 developed at the Colorado School of Mines. In this int ...

  • Do you have a great resource to share with the community? Click here.
  • This is a guide given in Science 8 class on Day 1.

  • Science Class Day 2 worksheet

  • Reading for Day 3 of Science, or to be used as a homework reading.

  • Students design, build and test model roller coasters using foam tubing. The design process integrates energy concepts as they test and evaluate designs that address the task as an engineer would. The goal is for students to understand the basics of ...

  • Students apply the concepts of conduction, convection and radiation as they work in teams to solve two challenges. One problem requires that they maintain the warm temperature of one soda can filled with water at approximately human body temperature,...

  • Working as if they were engineers, students design and construct model solar sails made of aluminum foil to move cardboard tube satellites through “space” on a string. Working in teams, they follow the engineering design thinking steps—empathize, def...

  • As part of a design challenge, students learn how to use a rotation sensor (located inside the casing of a LEGO® MINDSTORMS ® EV3 motor) to measure how far a robot moves with each rotation. Through experimentation and measurement with the sensor, stu...

  • In this activity, students examine how to grow plants the most efficiently. They imagine that they are designing a biofuels production facility and need to know how to efficiently grow plants to use in this facility. As a means of solving this design...

  • Students gain first-hand experience with the steps of the scientific method as well as the overarching engineering design process as they conduct lab research with the aim to create a bioplastic with certain properties. Students learn about the light...

  • Students act as structural engineers and learn about forces and load distributions as they follow the steps of the engineering design process to design and build small-scale bridges using wooden tongue depressors and glue. Teams brainstorm ideas that...

  • This hands-on experiment provides students with an understanding of the issues that surround environmental cleanup. Student teams create their own oil spills, try different methods for cleaning them up, and then discuss the merits of each method in t...

  • Students are introduced to two real-life problems that can be solved by using the engineering design process. For the first one, they follow along with a slide presentation that describes how a group of students built an organizer to help organize th...

  • Students are presented with a guide to rain garden construction in an activity that culminates the unit and pulls together what they have learned and prepared in materials during the three previous associated activities. They learn about the four ver...

  • Students are introduced to renewable energy, including its relevance and importance to our current and future world. They learn the mechanics of how wind turbines convert wind energy into electrical energy and the concepts of lift and drag. Then they...

  • Students build small-sized prototypes of mountain rescue litters—rescue baskets for use in hard-to-get-to places, such as mountainous terrain—to evacuate an injured person (modeled by a potato) from the backcountry. Groups design their litters within...

  • PowerPoint used within the session. Notes on the slides contain all links, videos and activity guides.

  • 300+ teacher developed middle school and high school challenge-based learning engineering units - created through University of Cincinnati NSF program

  • In this activity, students assume the role of a team of architects that has been commissioned to build a solar house containing both active and passive solar components. First, they must design the house and then build a model. The model is tested to...

  • Students investigate passive solar building design with a focus on heating. Insulation, window placement, thermal mass, surface colors, and site orientation are addressed in the background materials and design preparation. Students test their project...

  • This hands-on activity will provide students with an understanding of the issues that surround environmental clean-up. Students will create their own oil spill, try different methods for cleaning it up, and then discuss the merits of each method in t...

  • In this activity, students collect data and analyze the cost of using energy in their homes and investigate one method of reducing energy use. This activity provides educators and students with the means to connect 'energy use consequences' and 'clim...

  • Students explore how various energy sources can be used to cause a turbine to rotate and then generate electricity with a magnet.

  • In this activity learners work in pairs or small groups to evaluate energy use in their school and make recommendations for improved efficiency. Students create and use an energy audit tool to collect data and present recommendations to their class. ...

  • Students go through the design process and the scientific process to test the effect of blade design on power output. There is an optional extension to use the data to create an optimal set of wind turbine blades.

  • This lesson plan engages students in a real-life exploration of climate change as it is affected by greenhouse emissions from vehicles. The aim of this activity is for students to realize the impact of vehicle use in their family and to give students...

  • This activity features video segments from a 2007 PBS program on solar energy. Students follow a seven-step invention process to design, build, and test a solar cooker that will pasteurize water. In addition, they are asked to describe how transmissi...

  • This activity introduces wind energy concepts through a reading passage and by answering assessment questions. The main section of the activity involves constructing and testing a windmill to observe how design and position affect the electrical ener...

  • This activity includes an assessment, analysis, and action tool that can be used by classrooms to promote understanding of how the complex current issues of energy, pollution, supply, and consumption are not just global but also local issues.

  • This is a debate-style learning activity in which student teams learn about energy sources and are then assigned to represent the different energy sources. Working cooperatively, students develop arguments on the pros and cons of their source over th...

  • This activity is a learning game in which student teams are each assigned a different energy source. Working cooperatively, students use their reading, brainstorming, and organizational skills to hide the identity of their team’s energy source whil...

  • This PBS video shows how Klaus Lackner, a geophysicist at Columbia University, is trying to tackle the problem of rising atmospheric CO2 levels by using an idea inspired by his daughter's 8th-grade science fair project. The video examines the idea of...

  • This Flash animation describes how hybrid-electric vehicles (HEVs) combine the benefits of gasoline engines and electric motors and can be configured to obtain different objectives, such as improved fuel economy, increased power, or additional auxili...

  • This is a utility-scale, land-based map of the mean annual wind speed 80 meters above the ground. This map can be used to evaluate the potential for wind energy in the US. State maps and more information are linked from the main map.

  • In this activity, students explore energy production and consumption by contrasting regional energy production in five different US regions.

  • This slideshow lays out a photo story with short descriptions of how designers of city buildings all over the world are taking climate change and rising sea level seriously.

  • In this interactive, students can investigate a typical hydrogen fuel cell prototype car from its fuel cell stacks to its ultracapacitor, a kind of supplementary power source. The limited-production vehicle seen in this feature is a Honda 2005 FC...

  • In this activity, students conduct a life cycle assessment of energy used and produced in ethanol production, and a life cycle assessment of carbon dioxide used and produced in ethanol production.

  • A set of eight photographs compiled into a series of slides explain how urban areas are facing challenges in keeping both their infrastructure and their residents cool as global temperatures rise. Chicago is tackling that problem with a green design ...

  • In this hands-on activity, students explore whether rooftop gardens are a viable option for combating the urban heat island effect. The guiding question is: Can rooftop gardens reduce the temperature inside and outside of houses?

  • This interactive visualization provides information in text, graphic, and video format about renewable energy technologies. Resource in the Student's Guide to Global Climate Change, part of EPA Climate Change Division.

  • In this hands-on activity, students examine how the orientation of a photovoltaic (PV) panel -- relative to the position of the sun -- affects the energy-efficiency of the panel.

  • In this activity, students explore real data about renewable energy potential in their state using a mapping tool developed by NREL (National Renewable Energy Laboratory) to investigate the best locations for wind energy, solar energy, hydropower, g...

  • This small-group activity uses engineering concepts to design energy systems for three off-the-grid towns in Mali, Ethiopia, and Namibia.

  • In this activity, students work through the process of evaluating the feasibility of photovoltaic solar power in 4 different US cities.

  • This online activity challenges students to design a renewable energy system for one of five different cities, each with different energy resource potential and budgets. Students can test their designs using real-time weather data in each city.

Planning Curriculum gives connections to other areas of study for easier curriculum creation.