• Back
  • High School

    Waves and Electromagnetic Radiation

Students who demonstrate understanding can:

Performance Expectations

  1. Use mathematical representations to support a claim regarding relationships among the frequency, wavelength, and speed of waves traveling in various media. HS-PS4-1

    Clarification Statement and Assessment Boundary
  2. Evaluate questions about the advantages of using a digital transmission and storage of information. HS-PS4-2

    Clarification Statement and Assessment Boundary
  3. Evaluate the claims, evidence, and reasoning behind the idea that electromagnetic radiation can be described either by a wave model or a particle model, and that for some situations one model is more useful than the other. HS-PS4-3

    Clarification Statement and Assessment Boundary
  4. Evaluate the validity and reliability of claims in published materials of the effects that different frequencies of electromagnetic radiation have when absorbed by matter. HS-PS4-4

    Clarification Statement and Assessment Boundary
  5. Communicate technical information about about how some technological devices use the principles of wave behavior and wave interactions with matter to transmit and capture information and energy. HS-PS4-5

    Clarification Statement and Assessment Boundary

A Peformance Expectation (PE) is what a student should be able to do to show mastery of a concept. Some PEs include a Clarification Statement and/or an Assessment Boundary. These can be found by clicking the PE for "More Info." By hovering over a PE, its corresponding pieces from the Science and Engineering Practices, Disciplinary Core Ideas, and Crosscutting Concepts will be highlighted.

Science and Engineering Practices

Asking Questions and Defining Problems

Asking questions and defining problems in 9–12 builds on grades K–8 experiences and progresses to formulating, refining, and evaluating empirically testable questions and design problems using models and simulations.

Using Mathematics and Computational Thinking

Mathematical and computational thinking in 9–12 builds on K–8 experiences and progresses to using algebraic thinking and analysis, a range of linear and nonlinear functions including trigonometric functions, exponentials and logarithms, and computational tools for statistical analysis to analyze, represent, and model data. Simple computational simulations are created and used based on mathematical models of basic assumptions.

Engaging in Argument from Evidence

Engaging in argument from evidence in 9–12 builds on K–8 experiences and progresses to using appropriate and sufficient evidence and scientific reasoning to defend and critique claims and explanations about the natural and designed world(s). Arguments may also come from current scientific or historical episodes in science.

Disciplinary Core Ideas

By clicking on a specific Science and Engineering Practice, Disciplinary Core Idea, or Crosscutting Concept, you can find out more information on it. By hovering over one you can find its corresponding elements in the PEs.

Planning Curriculum

Common Core State Standards Connections


  • RST.11-12.1 - Cite specific textual evidence to support analysis of science and technical texts, attending to important distinctions the author makes and to any gaps or inconsistencies in the account. (HS-PS4-2), (HS-PS4-3), (HS-PS4-4)
  • RST.11-12.7 - Integrate and evaluate multiple sources of information presented in diverse formats and media (e.g., quantitative data, video, multimedia) in order to address a question or solve a problem. (HS-PS4-1), (HS-PS4-4)
  • RST.11-12.8 - Evaluate the hypotheses, data, analysis, and conclusions in a science or technical text, verifying the data when possible and corroborating or challenging conclusions with other sources of information. (HS-PS4-2), (HS-PS4-3), (HS-PS4-4)
  • RST.9-10.8 - Assess the extent to which the reasoning and evidence in a text support the author’s claim or a recommendation for solving a scientific or technical problem. (HS-PS4-2), (HS-PS4-3), (HS-PS4-4)
  • WHST.11-12.8 - Gather relevant information from multiple authoritative print and digital sources, using advanced searches effectively; assess the strengths and limitations of each source in terms of the specific task, purpose, and audience; integrate information into the text selectively to maintain the flow of ideas, avoiding plagiarism and overreliance on any one source and following a standard format for citation. (HS-PS4-4)
  • WHST.9-12.2 - Write informative/explanatory texts, including the narration of historical events, scientific procedures/ experiments, or technical processes. (HS-PS4-5)


  • HSA-CED.A.4 - Rearrange formulas to highlight a quantity of interest, using the same reasoning as in solving equations. (HS-PS4-1), (HS-PS4-3)
  • HSA-SSE.A.1 - Interpret expressions that represent a quantity in terms of its context. (HS-PS4-1), (HS-PS4-3)
  • HSA-SSE.B.3 - Choose and produce an equivalent form of an expression to reveal and explain properties of the quantity represented by the expression.★ (HS-PS4-1), (HS-PS4-3)
  • MP.2 - Reason abstractly and quantitatively. (HS-PS4-1), (HS-PS4-3)
  • MP.4 - Model with mathematics. (HS-PS4-1)

Model Course Mapping

First Time Visitors

Resources & Lesson Plans

  • More resources added each week!
    A team of teacher curators is working to find, review, and vet online resources that support the standards. Check back often, as NSTA continues to add more targeted resources.

Planning Curriculum gives connections to other areas of study for easier curriculum creation.