Electromagnetic Power!

Martinson Center for Mathematics and Science, Regent University
Type Category
Instructional Materials
Lesson/Lesson Plan
This resource, vetted by NSTA curators, is provided to teachers along with suggested modifications to make it more in line with the vision of the NGSS. While not considered to be “fully aligned,” the resources and expert recommendations provide teachers with concrete examples and expert guidance using the EQuIP rubric to adapted existing resources. Read more here.



Students will investigate the characteristics of electromagnetism and then use what they learn to plan and conduct an experiment on electromagnets.

Intended Audience

Educator and learner
Educational Level
  • Grade 4
  • Middle School
  • Grade 5
Access Restrictions

Free access - The right to view and/or download material without financial, registration, or excessive advertising barriers.

Performance Expectations

MS-PS2-3 Ask questions about data to determine the factors that affect the strength of electric and magnetic forces.

Clarification Statement: Examples of devices that use electric and magnetic forces could include electromagnets, electric motors, or generators. Examples of data could include the effect of the number of turns of wire on the strength of an electromagnet, or the effect of increasing the number or strength of magnets on the speed of an electric motor.

Assessment Boundary: Assessment about questions that require quantitative answers is limited to proportional reasoning and algebraic thinking.

This resource is explicitly designed to build towards this performance expectation.

Comments about Including the Performance Expectation
The lesson plan specifically asks students to think about electricity and about magnetism. Further, students ask questions about data (based on observations made with a basic electromagnet), as a springboard to designing their own experiments about electromagnet strength. They then use the data they collect in their own experiment to support or reject their hypothesis. The lesson plan as written implies great freedom in designing experiments; strangely, the student handout is a “follow-the-directions” activity. A teacher will need to modify the student handout by removing the existing “Testable Question” from the Electromagnet Planning Sheet, removing the second page (specific directions for changing the number of winds of wire), and modifying the data table on the third page to remove the pre-set row labels.

Science and Engineering Practices

This resource is explicitly designed to build towards this science and engineering practice.

Comments about Including the Science and Engineering Practice
This Practice is explicit in the lesson plan as written, but not in the student handout as written. During the lesson, students plan and carry out investigations into strengths of electromagnets. The first portion of the student design process (the “Four Questions Strategy”) is faithful to the ideas of NGSS: working individually and collaboratively (see lesson plan for each of these), identifying variables and controls. The second portion of the student activity (“Electromagnet Planning Sheet”) as it stands gives a narrow question to answer (how will the number of turns of wire affect the strength of the electromagnet?), perhaps more appropriate for lower elementary students to see the correlation between their brainstorming and an “actual experiment”. At the middle school level, teachers will need to modify this second portion to allow for more open-ended, student- conceived and student-designed investigations. See the Teacher Tips for the Performance Indicator for details about how to modify this lesson.

Disciplinary Core Ideas

This resource is explicitly designed to build towards this disciplinary core idea.

Comments about Including the Disciplinary Core Idea
Students are experimenting to discover what factors can affect the strength of their electromagnet, and thus the size of the force (number of paper clips that can be picked up). Students may need to be reminded or taught that the magnetic forces they measure in the lab are a result of electric force from the battery/wire circuit. Depending on the specific experiments chosen by different groups, this connection may become obvious during a class discussion of experiments and findings.

Crosscutting Concepts

This resource appears to be designed to build towards this crosscutting concept, though the resource developer has not explicitly stated so.

Comments about Including the Crosscutting Concept
Students are using the idea of cause and effect to predict (hypothesize) what will happen when they make changes to their electromagnet. The implication is that “doing something” to the electromagnet (cause) makes “something different” happen (effect), and that the effect can be predicted in advance (hypothesis). The exact language of cause and effect is not used and will need to be pointed out by the teacher as students design experiments.

Resource Quality

  • Alignment to the Dimensions of the NGSS: The Disciplinary Core Idea and Practice are spotlighted in this lesson plan (though not in the student handout as written). The cross-cutting idea could easily be worked in with some specific language use on the part of the teacher.

  • Instructional Supports: Though strong in most areas of instructional support (real world connections, setting a purpose for an investigation, scaffolding of lesson, expectations of student communication), others are not part of this lesson (differentiation, exposure to multiple and varied phenomena). Differentiation could be introduced by offering some experiment groups more help or “scaffolding” with designing or writing up their experiment, or by making a more limited or a wider variety of supplies available while brainstorming possible experiment ideas.

  • Monitoring Student Progress: The lesson plan offers multiple opportunities for informal formative assessments of content knowledge and understanding of the scientific method. Due to the nature of the activities, the formative assessments give information about the understanding of pairs, groups, and the class as a whole, but not necessarily individual students. These formative assessments also do not address the cross-cutting concept (cause and effect). The lesson includes a summative assessment that is true to the spirit of NGSS - a claim/evidence/reasoning paragraph about whether the hypothesis was supported. This paragraph will show evidence of a student's understanding of the content as well as the practice, but not a cross-cutting concept. The lesson offers no scoring guides or rubrics.

  • Quality of Technological Interactivity: This resource is a PDF document. The lesson does not include a technology-based interactive component.