This resource is explicitly designed to build towards this science and engineering practice.
Comments about Including the Science and Engineering Practice
Students are asked to construct an explanation (“write a rule”) about how mass, force and acceleration are related. The simulation can be used entirely to describe phenomena, or students can be asked to use partial data to predict “missing” information, as described in the Tips for the Practice of Analyzing and Interpreting data, above. The simulation could be accompanied by a real-life phenomenon, to clarify the jump from specific model to general explanation. The data provided is quantitative, though units of measurement are not provided. The underlying math seems to be a straightforward F=ma, so if a teacher wishes to incorporate units, it may be inferred that these are Newtons, kg, and m/s2 respectively. Students are most likely to describe the relationship as a = F/m, so if a teacher or curriculum presents Newton’s Second Law as F = m x a, the teacher will need to make sure it is clear to all students that the two expressions are in fact the same.
This resource is explicitly designed to build towards this science and engineering practice.
Comments about Including the Science and Engineering Practice
Students are asked to used the data from the completed chart to write a rule about how mass, force and acceleration are related. If done as a whole-class activity (projected onto a screen that all can see), students can request certain combinations of force and acceleration, and once a few points are filled in on the data table, students can be asked to analyze the data they have in order to make predictions about what the acceleration will be when certain other combinations are used. Predictions can be shared via whiteboard, worksheets, or discussion. Students can be asked to explain the reasoning behind their predictions. A teacher could ask students to graph the data to determine if the relationships are linear.